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Abstract
We have analysed effects of submonolayer aluminium adsorption on field
emission from Si(100) surfaces using ab initio density functional calculations
incorporating scattering states. We have clarified that the electron transfer from
aluminium atoms to silicon atoms plays an important role in reducing the local
barrier height in front of aluminium atoms, resulting in large emission current.
We have also found that, when nanostructures having comparable minimum
local barrier height are considered, the relative efficiency of field emission can
be explained by the difference in the density of emission sites and the surface
local density of states at the Fermi energy.

1. Introduction

Field emission [1] can provide cold electron sources with low energy consumption. In
particular, nanostructures fabricated on silicon surfaces [2] are of great interest because of
possibilities for the control of field emission properties on the nanoscale. As one kind of such
nanostructures, metal coating on silicon surfaces has been studied recently to improve the
emission efficiency and the emission stability of silicon surfaces [3–5]. However, optimum
conditions for field emission from metal-adsorbed silicon surfaces have not been clarified yet,
although the coverage optimum for the emission efficiency is speculated to be the submonolayer
regime for the flat plate configuration [3]. In another work of ours [6], field emission from the
Si(100)2 ×2–Al surface which has an Al coverage of 0.5 monolayer (ML) has been compared
with that from a clean silicon surface of an ultrathin film. We have pointed out that the local
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barrier height is more important than the work function as a key to understand the difference
between the field emission properties. However, the origin of behaviours of the local barrier
height has not been obtained, and, in this sense, the mechanism of the large emission current has
not been clarified yet. One promising approach to clarify the mechanism is to compare among
different materials with almost the same atomic structures, such as the comparison of single-
atom terminated protrusions of almost the same size changing the material of substrates. Since
the potential barrier is strongly affected by the electron distribution, it is helpful to estimate the
Mulliken charge of each atom. Furthermore, although the minimum local barrier height has
been found to be a key factor to understand the field emission properties from the analysis of the
Si(100)2×2–Al surface, it is worth exploring other helpful factors to understand field emission
from metallic nanostructures on silicon surfaces. Since metal-adsorbed silicon surfaces used
in field emission experiments are usually disordered, analysis of field emission from small
clusters as adsorbates is desirable.

In the present work, we report the results of our theoretical analysis on effects of the
configuration of aluminium atoms adsorbed on the Si(100) surface using ab initio density
functional calculations incorporating scattering states [7, 8] together with density functional
calculations using localized basis sets. We have found that the electron transfer from aluminium
atoms to silicon atoms plays an important role in reducing the local barrier height in front of
aluminium atoms which leads to large field emission current. We have also clarified that, in
addition to the minimum local barrier height, the difference in the density of emission sites
and the surface local density of states at the Fermi energy are helpful factors that describe the
relative efficiency of field emission from metallic structures on Si(100) surfaces.

2. Computational scheme

The field emission current was calculated within the framework of the density functional
theory (DFT) [9, 10] for zero-temperature cases. To analyse electron transport, we have
already developed a method based on ab initio density functional calculations incorporating
scattering states [7, 8] that have been applied so far to field emission [7, 8, 11, 12], transport
through atomic wires [13], issues on scanning tunneling microscopy [14, 15], the capacitance of
nanoscale structures [16], and the atomic vibration by the electric field [17], obtaining results
of interest successfully. Since this method has been reported only briefly in the previous
publications, we describe the detail of this method named the boundary-matching scattering-
state density functional (BSDF) method that eliminates unknown transmission and reflection
coefficients utilizing boundary conditions to solve the Kohn–Sham equation straightforwardly
as boundary-value problems. In this section, the atomic units are used to describe formulae
for convenience, i.e. e2 = h̄ = m = 4πε0 = 1, where e is the elementary positive charge, h̄ is
the Planck constant, m is the electron mass, and ε0 is the dielectric constant in the vacuum.

2.1. Model

Since the BSDF method is based on the DFT [9, 10], a fully quantum mechanical description of
electronic states including electronic many-body effects can be achieved from the DFT ansatz
without any adjustable parameters. Assuming that electronic wavefunctions keep their phase,
i.e. electrons are coherent and inelastic scattering does not occur, current-carrying electronic
states are calculated explicitly in the BSDF method. Once one-electron scattering states are
obtained, electronic states are occupied up to the quasi-Fermi level. Effects of an electric field
or a bias voltage are included in the boundary conditions of the Poisson equation. Finally,
electronic states including scattering states are self-consistently determined as solutions to the
Kohn–Sham equations of the DFT.
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Figure 1. The model consists of a single semi-infinite electrode and the vacuum. The model is
divided into three regions, and vertical dashed lines show the boundaries between adjacent regions.

In the present model, a single semi-infinite electrode is incorporated as an electron
reservoir, because the BSDF method is applicable to field emission without a counterelectrode
[7, 8, 11, 12, 17] as well as non-field-emission cases suitable for using two electrodes [13–16].
It should be emphasized that computation for field emission by the present method is
remarkably efficient compared with conventional methods employing a counterelectrode,
because the configuration of a counterelectrode makes the computational cost at least twice
as high. Deep inside a semi-infinite electrode, ionic lattice cores are modelled by a uniform
positive background charge called the jellium model. Although the jellium model is not
indispensable in the present method, this model makes practical calculations considerably
easier. To this semi-infinite jellium electrode, a nanostructure of interest is attached including
the atomic structure explicitly. To incorporate translational symmetry of the surface, the
periodic boundary conditions are imposed on the atomic arrangement of a nanostructure in the
direction parallel to the surface.

The whole system represented by the model mentioned above is divided into the following
three regions as shown in figure 1:

(i) the electrode region which is deep inside the jellium having a homogeneous one-electron
effective potential and electronic states are described using plane waves,

(ii) the surface region which includes an ionic slab of a nanostructure and self-consistent DFT
calculations are performed numerically, and

(iii) the vacuum region which is far from the surface and an electric field is regarded as nearly
constant.

Here, we would like to comment on the model of flat surfaces used in our calculations. In most
of the field-emission experiments, sharp needle structures have been used as field emitters,
because local electric fields of the order of 2–10 V nm−1 are necessary on the apex of a field
emitter. Since the typical radius of the apex is of the order of 100 nm, a surface of field emitters
is practically flat on the atomic scale. Thus, in our work, the adopted model consists of flat
surfaces with an applied local electric field F which includes effects of the field enhancement
factor β.

Since electrons are emitted from an electrode to the vacuum in field emission, the emission
process is considered as follows. First, electrons travel from the electrode region to the surface
region as a plane wave exp(ikz). Next, electrons are elastically scattered at the surface region.
Finally, the scattered electron wave is partially transmitted as a superposition of scattering
waves

∑
j Tjw

j (z) wherew j (z) is a known function, and the rest of the wave is reflected as a

superposition of plane waves
∑

m′ Rm′ exp(−ikm′
z z). To consider the process in this way means

that electronic states are treated as nonequilibrium steady states. Transient phenomena are not
considered, while they can be analysed by time-dependent methods [18, 19].
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2.2. Solutions to the Kohn–Sham equations

Since it is essential to analyse electronic states as a scattering problem, the BSDF method
eliminates unknown transmission and reflection coefficients utilizing boundary conditions, and
solves the Kohn–Sham equation straightforwardly as boundary-value problems. In contrast
to the conventional band structure calculations where the Kohn–Sham equation is solved as
an eigenvalue problem for given k, in the present method, k in the current-flow direction (z
direction), kz , cannot be a good quantum number in the scattering region because of the absence
of periodicity in the z direction. Therefore, the Kohn–Sham equation is solved for a given
energy E .

Imposing periodic boundary conditions in the direction parallel to the surface (r‖
direction), a one-electron wavefunction �Ek‖(r‖, z) and the effective potential Veff(r‖, z) in
the surface region are expanded by plane waves:

�Ek‖(r‖, z) =
∑

j

ψ(G
j
‖, z)e−i(k‖+G

j
‖)·r‖ , (1)

Veff(r‖, z) =
∑

j

Veff(G
j
‖, z)e−iG j

‖ ·r‖ . (2)

In practice, these Fourier expansions are truncated within j that satisfies E‖,cut � |k‖ +G
j
‖|2/2.

The accuracy of these truncated expansions can be controlled by adjusting the lateral cut-off
energy E‖,cut. By using these Fourier componentsψ(G j

‖, z) and Veff(G
j
‖, z), the Kohn–Sham

equation is reduced to a second-order ordinary differential equation:

1

2

d2

dz2
ψ j (z) =

∑
j ′

Vj j ′(z)ψ j ′
(z). (3)

Here, the definitions of symbols are as follows:

ψ j (z) = ψ(G
j
‖, z), (4)

Vj j ′(z) = Veff(G
j
‖ − G

j ′
‖ , z) +

[
1
2 |k‖ + G

j
‖|2 − E

]
δ j j ′, (5)

where δ j j ′ is the Kronecker delta.
This ordinary differential equation (3) is transformed into a set of difference equations by

discretization in the z direction using the Noumerov method [20] and is expressed as coupled
linear algebraic equations:∑

j ′

[(
δ j j ′ − h2

6
Vj j ′(zi−1)

)
ψ j ′

(zi−1)−
(

2δ j j ′ +
5h2

3
Vj j ′(zi)

)
ψ j ′
(zi )

+
(
δ j j ′ − h2

6
Vj j ′(zi+1)

)
ψ j ′
(zi+1)

]
= O(h6). (6)

In the following, the most important point in the present numerical treatment is described:
the removal of unknown transmission coefficients Tjm and reflection coefficients Rmm′ from
boundary conditions.

2.2.1. Boundary condition inside the jellium electrode. First, the boundary condition deep
inside the jellium is described. In a bulk jellium, electronic wavefunctions are given by plane
waves. Therefore, deep inside the jellium, an electronic wavefunction consists of an incident
plane wave and reflected plane waves:

�Ek‖m(r‖, z) = eikm
z ze−i(k‖+Gm

‖ )·r‖ +
M∑

m′=1

Rmm′ e−ikm′
z ze−i(k‖+Gm′

‖ )·r‖ , (7)



Theoretical analysis of field emission from metallic nanostructures on Si(100) surfaces 4689

where superscript m satisfies

|k‖ + Gm
‖ |2 + (km

z )
2

2
= E . (8)

Here, E is measured from the bottom of the jellium potential, and sampling of k‖ points is done
in the surface Brillouin zone. Due to the uniformity of electronic states in the r‖ direction, a
quantum number is specified by k‖ and m together with E . It should be noted that the size of
the reflection matrix R is M ×M , where M is the number of m which satisfies equation (8). An
m ′th Fourier component of equation (7) satisfies the following relationships at the boundary
z = z1:

ψm′
m (z1) = eikm

z z1δmm′ + Rmm′ e−ikm′
z z1 , (9)

d

dz
ψm′

m (z)

∣∣∣∣
z=z1

= ikm
z eikm

z z1δmm′ − ikm′
z Rmm′ e−ikm′

z z1 . (10)

Since eikm
z z1 represents the phase of an independent incident wave,eikm

z z1 is arbitrarily set to unity.
In contrast to analytically solvable cases,we must remove unknown reflection coefficients Rmm′

from the boundary conditions. Combining the equation (9) with the equation (10), Rmm′ is
eliminated, and, consequently, the boundary condition deep inside the jellium electrode is
given as

d

dz
ψ j

m(z)

∣∣∣∣
z=z1

= 2ikm
z δmj − ikm′

z δm′ jψ
j

m(z1). (11)

Precisely speaking, in the present method, not only travelling plane waves but also
evanescent waves which decay exponentially toward the inside of the electrode are included
in the boundary condition as a Fourier component which has an apparent energy larger than E
in the surface direction. It should be noted that wavefunctions growing exponentially toward
the inside of the electrode are unphysical, and thus are excluded. For these evanescent waves,
the boundary condition which is not written in equation (11) becomes as follows:

d

dz
ψµm (z)

∣∣∣∣
z=z1

= κµz ψ
µ
m (z1), (12)

where κµz =
√

|k‖ + G
µ

‖ |2 − 2E . Here, µ is a Fourier component j for which no real k j
z

satisfies equation (8).

2.2.2. Boundary condition in the vacuum. Next, the boundary condition in the vacuum is
described. In the vacuum region sufficiently far from the surface region, an electric field F can
be regarded as constant, because the density of electrons and their interactions are negligibly
small. In this situation, the effective potential is described as Veff(r) = Veff(zvac)−(z−zvac)F ,
where zvac denotes a point in the vacuum region. In this region, the Schrödinger equation
becomes

−1

2

d2

dz2
ψ j

m(z) +
[
Veff(zvac)− (z − zvac)F

]
ψ j

m(z) =
(

E − |k‖ + G
j
‖|2

2

)
ψ j

m(z). (13)

Since the Airy functions Ai(−ζ ) and Bi(−ζ ) are two independent solutions to the differential
equation y ′′ + ζ y = 0, the solutions to the equation (13) are Ai(−ζ ) and Bi(−ζ ), where

ζ = (2F)1/3
[

z − zvac − Veff(zvac)− E + 1
2 |k‖ + G

j
‖|2

F

]
. (14)
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It should be emphasized that the Airy functions Ai(−ζ ) and Bi(−ζ ) cannot be adopted directly
as a Fourier component of wavefunctions in the vacuum,because electronic states in the present
consideration are scattering states. Thus a scattering wave w(z) is constructed from Ai(−ζ )
and Bi(−ζ ) as

w(z) = C
[
Bi(−ζ ) + iAi(−ζ )]. (15)

This functionw(z) corresponds to a scattering state which propagates toward the +z direction.
Now, w(z) and w∗(z) are available as independent solutions instead of Ai(−ζ ) and Bi(−ζ ).
Since the function w∗(z) propagates toward the −z direction, only w(z) is necessary as a
scattering wave in the vacuum region in the case of field emission. As for the constant C , it
is determined using the current conservation condition. The current density calculated from
equation (15) becomes

jz = Im

[
w∗(z)

d

dz
w(z)

]
= C2(2F)1/3

π
. (16)

Since the current density of a plane wave is jz = kz , it is convenient to define the normalization
constant C as

C =
√
πkm

z

(2F)1/6
(17)

from the viewpoint of the current conservation law.
By using the propagating wave w(z) defined in equations (15) and (17), a transmitted

wave is expressed as

�Ek‖m(r‖, z) =
∑

j

Tjmw
j (z)e−i(k‖+G

j
‖)·r‖ . (18)

Here, Tjm is one of the NG × M components of the transmission matrix and NG is the number
of the surface reciprocal vectors G

j
‖ . At the boundary z = zN , the continuation conditions of

the wavefunction and its derivative are described as

ψ j
m(zN ) = Tjmw

j (zN ), (19)

d

dz
ψ j

m(z)

∣∣∣∣
z=zN

= Tjm
d

dz
w j (z)

∣∣∣∣
z=zN

. (20)

Consequently, the boundary condition in the vacuum is given by removing the transmission
matrix Tjm as

d

dz
ψ j

m(z)

∣∣∣∣
z=zN

=
d
dzw

j (z)|z=zN

w j (zN )
ψ j

m(zN ). (21)

The boundary condition for transmitted waves in the case of the presence of a counterelectrode
is derived replacing the Airy functions with plane waves.

These two numerically treatable boundary conditions (11) and (21) are effectively
discretized by the Noumerov method [20]. By using the obtained algebraic form of the
boundary conditions, the set of coupled linear equations (6) becomes a closed form, and
numerical solutions to the Kohn–Sham equations satisfying the boundary conditions are
obtained. After the wavefunction ψ j

m(z) is obtained, Tjm is calculated using equation (19).
As shown here, this algorithm solves scattering problems without any complicated techniques
such as those using the Green function and the transfer matrix. This simple idea of eliminating
unknown transmission and reflection coefficients has already been applied to one-electron
scattering problems [21]. We combined the idea with the DFT.
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2.3. Electron density and current density

Wavefunctions obtained in the BSDF method are transformed into the real-space
representation. Then the electron density is calculated from wavefunctions in real space.
It should be noted that a Fourier grid for the electron density is set twice as dense as the grid
for the wavefunction in each spatial direction [22].

Hereafter, the wavefunction �Ek‖(r) in equation (1) is rewritten as �Ek‖m(r) to specify
its origin as the incident wave m. Since the set of E and k‖ is connected with k through the
states of incident waves, we can use the wavevector of the incident wave defined in equation (8)
as an alternative quantum number of �Ek‖m(r). The electron density ρ(r) is calculated by
performing integration in the kz space and the surface Brillouin zone (sBZ) from states with
infinitesimal energy to states with the Fermi energy EF:

ρ(r) = 2

(2π)3
∑

m

∫ √
2EF

0
dkm

z

∫ sBZ

dk‖ |�Ek‖m(r)|2. (22)

Note that an incident wave m couples with the rest of the (M − 1) incident waves, M reflected
waves, and NG –M evanescent waves.

Since the Fermi surface of metals necessarily cuts at least one energy band and this band
is partially occupied, computation of ρ(r) using equation (22) is not straightforward. To
calculate the electron density with the finite number of discrete k points, partially occupied
quantum states have to be introduced near the Fermi surface in order to perform Brillouin-zone
integration. For this purpose, we adopt the method of Methfessel and Paxton for Brillouin-
zone integration [23–25] where the Heaviside function, i.e. the zero-temperature Fermi–Dirac
distribution, is expanded in a complete orthogonal set of functions using the error function and
the Hermite polynomials.

Due to an applied electric field, surface electronic states are in nonequilibrium. Therefore
the Fermi surface has to be treated carefully [26]. Since electrons emit into the vacuum, the
difference in the electron density of incident waves and reflected waves is

ρT = 2

(2π)3
∑

m

∫ √
2EF

0
dkm

z

∫ sBZ

dk‖
∑

j

T †
mj Tjm . (23)

Therefore, the Fermi level has to be raised self-consistently to keep the charge neutrality deep
in the jellium electrode as

EF = 1
2

[
3π2(ρ+ + ρT )

]2/3
, (24)

where ρ+ is the density of jellium. Here, we note that effects of space charges near the surface
are included in the present method. Finally, the current density is calculated as

j(r) = 2

(2π)3
∑

m

∫ √
2EF

0
dkm

z

∫ sBZ

dk‖ Im
[
�∗

Ek‖m(r)∇�Ek‖m(r)
]
. (25)

2.4. One-electron effective potential

The Hartree potential VH(r) including effects of an external electric field is calculated by
solving the Poisson equation in reciprocal space in the direction parallel to the surface. This
potential includes the classical electrostatic part of electron–electron interactions, electron–
jellium interactions, and effects of an external electric field. As for boundary conditions, the
boundary condition deep inside the jellium electrode is given as the value of VH, because VH

is constant in this region:

VH(G
j
‖, z) = −

(
VXC(G

j
‖, z) + Vion(G

j
‖, z)

)
δG j

‖0. (26)
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The boundary condition in the vacuum is given as the differential of VH, because an applied
electric field F is approximately constant in the vacuum:

d

dz
VH(G

j
‖, z) =

(
− d

dz
Vion(G

j
‖, z)− F

)
δG j

‖0. (27)

It should be noted that, in this second boundary condition, the potential at the boundary in the
direction parallel to the surface can be nonuniform in principle, although it becomes almost
uniform if the boundary is sufficiently far from the surface.

Since the total charge is obtained as a calculated result, the convergence of transport
calculations is extremely hard to achieve due to a change in the total charge in each iteration.
To improve the convergence of the self-consistent potential,we employ the Lagrange multiplier
method for the charge density in solving the Poisson equation.

In the framework of the DFT, all quantum mechanical many-body effects between electrons
besides VH(r) are included in the exchange–correlation potential VXC(r). The present work
adopts an exchange–correlation functional with the local density approximation [9, 10, 22]
proposed by Ceperley and Alder, which is based on quantum Monte Carlo simulations of a
homogeneous electron gas [27] and parametrized by Perdew and Zunger [28].

We employ pseudopotentials to exclude inert atomic core electrons from calculations. In
the present work, local pseudopotentials [29, 30] are used. Due to the requirement of a relatively
low cut-off energy, the use of these pseudopotentials remarkably reduces the computational
cost compared with the case of nonlocal pseudopotentials. Calculations of the lattice constant
and the total energy of the bulk silicon using this pseudopotential gave a satisfactory agreement
with experiments [31].

3. Mulliken population analysis

In another analysis of ours [6], we have clarified that the Si(100)2×2–Al surface under a strong
electric field has a small value of the minimum of the local barrier height (LBH), and the field
emission current from this surface is much larger than that from clean silicon and aluminium
surfaces. However, the mechanism of the large emission current has not been clarified yet. As
an essential mechanism, we speculate the formation of local dipole moments caused by the
charge transfer between silicon atoms and aluminium atoms.

To examine the validity of our speculation, we have analysed the Mulliken population
of the aluminium adatoms of the Si(100)2 × 2–Al surface at 0.5 ML coverage by density
functional calculations using localized basis sets and effective core potentials [27, 32–34].
A rectangular parallelepiped cluster used in the calculations is Al24Si269H168 consisting of
12 pairs of aluminium ad-dimers, five 6 × 8-sized Si(100) planes, and hydrogen atoms to
terminate the dangling bonds of silicon atoms. The atomic structure is the same as that used
in our density functional transport calculations [6] except for the hydrogen terminations. For
the two ad-dimers at the centre of the aluminium-adsorbed surface of the cluster, we have
obtained the transfer of 0.22 electrons from each aluminium atom to silicon atoms. This result
supports the formation of local dipole moments to reduce the local barrier height in front of
the aluminium ad-dimers mentioned above. Consequently, the most essential mechanism of
the large field emission current that is related to the local barrier height can be attributed to the
electron transfer from Al atoms to Si atoms.

We have also calculated the Mulliken population of an aluminium-adsorbed surface that
has clusters consisting of seven aluminium atoms analysed by our density functional transport
calculations in the next section. This Al7 cluster on the Si(100) surface is compared with an Al14

single-atom terminated protrusion on an Al(100) substrate analysed previously [8, 12]. We used
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Figure 2. Models used in density functional calculations using
localized basis sets and effective core potentials [27, 32–34]
without the electric field: (a) an Al34Si269H168 cluster and (b)
an Al304 cluster. The Mulliken charges are shown for aluminium
atoms consisting of protrusions.

density functional calculations using localized basis sets and effective core potentials [27, 32–
34]. Figure 2(a) shows an model of the Al7 cluster on the Si(100) surface, an Al34Si269H168

cluster that includes two Al7 clusters. As an model of an Al14 single-atom terminated protrusion
on an Al(100) substrate, we used an Al304 cluster that has one Al14 protrusion as shown in
figure 2(b). As for the model in figure 2(a), we direct our attention to only one of the Al7
clusters that is closest to the centre of the aluminium-adsorbed Si(100) surface, because the
other cluster is placed at the edge of the surface only to avoid the open-shell calculation that
is computationally expensive. For the Al7 cluster on the silicon surface, we have found that
the topmost aluminium atom is positively charged by 0.40e. This charging is caused by the
transfer of 0.71 electrons from aluminium atoms to silicon atoms. In contrast, the apex atom
of the Al14 single-atom terminated protrusion has a small negative charge of −0.06e. These
results indicate that the decrease in the LBH for the Al7 cluster on the Si(100) surface differs
essentially from that for the single-atom terminated protrusion on the Al(100) surface. In the
case of the single-atom terminated protrusion on the aluminium surface, the decrease in the
LBH is mainly attributed to the image-potential effects [8, 12]. In contrast, in the case of
the Al7 cluster on the Si(100) surface, the electrostatic effects by the charging of the apex
aluminium atom also play an important role.

4. Field emission from aluminium clusters

As an adsorption of aluminium atoms on the Si(100) surface, we have analysed the case where
the coverage is slightly larger than 0.5 ML. In figure 3, we show the three models considered in
the present analysis, i.e. Al4, Al6, and Al7 clusters on the Si(100) surface of an ultrathin film.
The Si(100) ultrathin film consisting of five silicon layers is attached to a semi-infinite jellium
electrode. We configure aluminium atoms to form a part of the fcc lattice and set the bond
length of aluminium atoms at its bulk value except for atoms directly contacting with silicon
atoms. The height of the topmost aluminium atom measured from the height of the silicon
dimers is 3.13 Å for Al4 and Al6 clusters, and is 5.16 Å for the Al7 cluster. These values
correspond well with those estimated from the experiment at 0.6 ML [35]. In the present
analysis, field emission properties from each cluster on the Si(100) surface were calculated
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Al6 Al7Al4

Figure 3. Models for Al4, Al6, and Al7 clusters on a Si(100) surface of an ultrathin film. The
dashed square is a two-dimensional unit cell with a periodicity of 2 × 2 used in the calculation and
plots of the calculated results. Note that computations were performed for each cluster with the
2 × 2 periodicity. White circles indicate silicon atoms and grey circles indicate aluminium ones.
The larger the size of the circles, the higher the atomic position among atoms of the same species.
For silicon atoms, only the first three layers are shown.

Table 1. Minimum of the LBH measured from EF, the number of emission sites Ns, and the field
emission current density j for Si(100) surfaces. Applied external electric field F is 10 V nm−1.

Structure min (LBH) (eV) Ns j (nA nm−2)

Al4 cluster 0.13 2 1900
Al6 cluster 0.35 4 2000
Al7 cluster −0.54 1 4800
Clean 1.16 2 360
0.5 ML 0.17 2 1100

with the 2 × 2 periodicity. It should be noted that imposing this periodicity leads to much
higher coverage than 0.6 ML. However, since we can expect to reproduce emission properties
of each cluster reasonably well by the present model, we can estimate the emission properties
of surfaces with realistic coverage of aluminium by considering the density of the aluminium
clusters. It should also be noted that the shape of the aluminium clusters used in the present
study is not optimized. However, such models of clusters are sufficient for the present purpose,
that is, not to analyse the emission properties of metal-adsorbed silicon surfaces quantitatively
in detail but to clarify dominant factors of their emission properties. In addition, detailed
information on the atomic structure of such clusters is not available.

In table 1, we summarize calculated results of field emission properties for an applied
electric field F of 10 V nm−1. The order of the values of j is within the range obtained by
the Stratton formula for field emission from semiconductors [36]. The value of j from the Al7
cluster, 4800 nA nm−2, is more than ten times as high as that from the clean Si(100) surface.
In contrast, j from the Al4 and Al6 clusters are not so large as that from the Al7 cluster. The
large emission current from the Al7 cluster is due to the small minimum of the LBH, −0.54 eV.
As discussed in the previous section, the electron transfer from the apex aluminium atom to
the substrate plays an essential role for the decrease in the LBH.

Comparing the Al4 cluster with the Al6 one, j from the Al6 cluster is larger than that from
the Al4 cluster, although the minimum of the LBH of the Al6 cluster, 0.35 eV, is slightly larger
than that of the Al4 cluster, 0.13 eV. This apparent discrepancy is explained by the number of
emission sites Ns shown in table 1. We have confirmed that the minima of the LBH are located
in front of the topmost atoms in all the cases we have studied. Since the Al6 cluster has four
topmost atoms, the number of emission sites of this cluster is twice the number of the sites of
the Al4 cluster. Since j is proportional to the number of emission sites, j from the Al6 cluster
becomes larger than that from the Al4 cluster, in spite of the larger minimum LBH of the Al6
cluster. It should be noted, however, that the number of emission sites is less important than
the minimum LBH because of the exponential dependence of j on the minimum LBH.
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Figure 4. Surface LDoS integrated in the first silicon
layer and in front of it in the case of F = 10 V nm−1. For
energies larger than EF, electronic states are unoccupied.

Figure 5. Distribution of electrons at EF for the Al7
cluster on the Si(100) surface in the case of F =
10 V nm−1. The density is plotted in the vertical (011)
plane containing the centre of ionic cores indicated by
bright circles. Dark circles are ionic cores, the centre of
which is out of the plane.

As seen in table 1, j from the Al4 cluster (1900 nA nm−2) is larger than that from the
0.5 ML adsorbed surface (1100 nA nm−2), although the minimum of the LBH for the surface
with the Al4 clusters is almost the same as that for the 0.5 ML adsorbed surface. This increase
in j can be explained by large local density of states (LDoS) at surfaces around EF shown
in figure 4. Here, the surface region includes the first silicon layer and adsorbed aluminium
atoms together with the vacuum region containing space charges near the outermost layers.
We can clearly see from this figure that the surface LDoS at EF for the surface with the Al4
cluster is the largest. Thus, the larger j from the Al4 cluster than that from the 0.5 ML
adsorbed surface can be attributed to the larger surface LDoS around EF. This fact suggests
that, if nanostructures having comparable minimum LBH are considered, the surface LDoS is
a helpful factor to predict the field emission efficiency. It should be noted that j from the Al7
cluster is also enhanced by the large surface LDoS. In this case, large amplitude of electronic
states at EF around the topmost aluminium atom, seen in the distribution of electrons at EF

shown in figure 5, reveals that a passage of emitted electrons through this atom exists.
As far as we have analysed, the field emission current increases monotonically as the

size of adsorbates increases. However, the emission efficiency can decrease as the adsorbate
coverage becomes much higher than the submonolayer regime analysed here, because the
shape of a cluster often becomes smoother as its size becomes larger. Thus, we speculate that
the optimum adsorbate coverage is not very high, which is consistent with an experiment [3].

5. Summary

We have analysed effects of metal adsorption on field emission from Si(100) surfaces using
ab initio density functional calculations incorporating scattering states, where unknown
transmission and reflection coefficients are eliminated utilizing boundary conditions, and the
Kohn–Sham equation is solved straightforwardly as boundary-value problems. We have found
that the electron transfer from aluminium atoms to silicon atoms plays an important role in
reducing the local barrier height in front of aluminium atoms resulting in large emission current.
We have also shown that relative efficiency of field emission can be explained by the difference
in the density of emission sites and the surface local density of states at the Fermi energy when
nanostructures having comparable minimum local barrier height are considered.
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